Evaluation Of Features For Sentence Extraction On Different Types Of Corpora
نویسندگان
چکیده
We report evaluation results for our summarization system and analyze the resulting summarization data for three different types of corpora. To develop a robust summarization system, we have created a system based on sentence extraction and applied it to summarize Japanese and English newspaper articles, obtained some of the top results at two evaluation workshops. We have also created sentence extraction data from Japanese lectures and evaluated our system with these data. In addition to the evaluation results, we analyze the relationships between key sentences and the features used in sentence extraction. We find that discrete combinations of features match distributions of key sentences better than sequential combinations.
منابع مشابه
استخراج پیکره موازی از اسناد قابلمقایسه برای بهبود کیفیت ترجمه در سیستمهای ترجمه ماشینی
Data used for training statistical machine translation method are usually prepared from three resources: parallel, non-parallel and comparable text corpora. Parallel corpora are an ideal resource for translation but due to lack of these kinds of texts, non-parallel and comparable corpora are used either for parallel text extraction. Most of existing methods for exploiting comparable corpora loo...
متن کاملSyntactic Complexity of Russian Unified State Exam Texts in English: A Study on Reliability and Validity
In this study we analyze texts used in Russian Unified State Exam on English language. Texts that formed small research corpora were retrieved from 2 resources: official USE database as a reference point, and popular website used by pupils for USE training “Neznaika” (https://neznaika.pro/). The size of two corpora is balanced: USE has 11934 tokens and “Neznaika” - 11918 tokens. We share Biber’...
متن کاملParallel Sentence Extraction from Comparable Corpora with Neural Network Features
Parallel corpora are crucial for machine translation (MT), however they are quite scarce for most language pairs and domains. As comparable corpora are far more available, many studies have been conducted to extract parallel sentences from them for MT. In this paper, we exploit the neural network features acquired from neural MT for parallel sentence extraction. We observe significant improveme...
متن کاملExtraction of German Multiword Expressions from Parsed Corpora Using Context Features
We report about tools for the extraction of German multiword expressions (MWEs) from text corpora; we extract word pairs, but also longer MWEs of different patterns, e.g. verb-noun structures with an additional prepositional phrase or adjective. Next to standard association-based extraction, we focus on morpho-syntactic, syntactic and lexical-choice features of the MWE candidates. A broad range...
متن کاملمقایسه روشهای مختلف یادگیری ماشین در خلاصهسازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت
In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...
متن کامل